Description
9mm Primers
These non-corrosive, all weather primers deliver fast, dependable ignition under any shooting condition. Primers are constantly and rigorously tested for consistency and sensitivity at temperatures and conditions far beyond the range of normal usage. Winchester guarantees better sensitivity for more positive firing in all guns, carefully-controlled weights of primer mixtures, consistency in size and quality, precise measurements and tolerances for anvil heights and stability in extremes of temperatures and humidity. 9mm primers
Quantity Information:
- Box of 1000: 10 Sleeves of 100
- Box of 5000: 5 boxes of 1000
In firearms and artillery 9mm primers is the chemical and/or device responsible for initiating the propellant combustion that will push the projectiles out of the gun barrel. In early black powder guns such as muzzleloaders, the primer was essentially the same chemical as the main propellant (albeit usually in a finer-powdered form), but poured into an external flash pan, where it could be ignited by an ignition source such as a slow match or a flintlock though some muzzleloaders have primers like cap gun caps. This external powder was connected through a small opening at the rear of the gun barrel that led to the main charge within the barrel. As gunpowder will not burn when wet, this made it difficult (or even impossible) to fire these types of weapons in rainy or humid conditions. 9mm primers
Modern primers, by contrast, are more specialized and distinct from the main propellant they are designed to ignite. They are of two types, those using shock-sensitive chemicals, and those reliant on chemicals ignited by an electric impulse. In smaller weapons the primer is usually of the first type and integrated into the base of a cartridge. Examples include handgun cartridges, rifle cartridges, and shotgun shells. Larger artillery pieces in contrast typically use electric priming. In artillery the primers are frequently a separate component, placed inside the barrel to the rear of the main propellant charge—but there are other examples of guns, including for example some automatic weapons, designed to shoot cartridges with integral electric primers. Upon being struck with sufficient force generated by the firing pin, or electrically ignited, primers react chemically to produce heat, which gets transferred to the main propellant charge and ignites it, and this, in turn, propels the projectile. Due to their small size, these primers themselves lack the power to shoot the projectile, but still have enough energy to drive a bullet partway into the barrel — a dangerous condition called a squib load. 9mm primers
Priming methods
The first step to firing a firearm of any sort is igniting the propellant. The earliest firearms were hand cannons, which were simple closed tubes. There was a small aperture, the “touchhole”, drilled in the closed end of the tube, leading to the main powder charge. This hole was filled with finely ground powder, which was then ignited with a hot ember or torch. With the advent of hand-held firearms, this became an undesirable way of firing a gun. Holding a burning stick while trying to pour a charge of black powder carefully down a barrel is dangerous, and trying to hold the gun with one hand while simultaneously aiming at the target and looking for the touchhole makes it very difficult to fire accurately. 9mm primers
Electric-fired
A small number of caseless cartridges use no primer at all, but the primary propellant is ignited using an externally provided electric charge, such as with the Voere VEC-91 and the O’Dwyer VLe. This is not to be confused with an electrically ignited internal primer (see below).
Internal priming
Chemical primers, advanced metallurgy and manufacturing techniques all came together in the 19th century to create an entirely new class of firearm — the cartridge arm. Flintlock and caplock shooters had long carried their ammunition in paper cartridges, which served to hold a measured charge of powder and a bullet in one convenient package; the paper also served to seal the bullet in the bore. Still, the source of ignition was handled separately from the cartridge. With the advent of chemical primers, it was not long before several systems were invented with many different ways of combining bullet, powder, and primer into a single package which could be loaded quickly from the breech of the firearm. This greatly streamlined the reloading procedure and paved the way for semi- and fully automatic firearms.This big leap forward came at a price. It introduced an extra component into each round – the cartridge case – which had to be removed before the gun could be reloaded. While a flintlock, for example, is immediately ready to be reloaded once it has been fired, adopting brass cartridge cases brought in the problems of extraction and ejection. The mechanism of a modern gun not only must load and fire the piece, but also must remove the spent case, which may require just as many moving parts. Many malfunctions involve this process, either through failure to extract a case properly from the chamber or by allowing it to jam the action. Nineteenth-century inventors were reluctant to accept this added complication and experimented with a variety of self-consuming cartridges before acknowledging that the advantages of brass cases far outweighed their one drawback .9mm primers
Reviews
There are no reviews yet.